The National Institute of Standards and Technology (NIST) is the principal National Measurements Institute (NMI) in the United States serving under the U.S. Department of Commerce. NIST, formerly the National Bureau of Standards (NBS), serves as the highest level authority for metrology in the U.S. NIST’s primary responsibility is to provide measurement services and maintain measurement standards that assist U.S. industry in making traceable measurements which ultimately assist in trade of products and services. NIST provides these services directly to many types of industries, but primarily to those industries that require the highest level of accuracy for their products and that incorporate state-of-the-art measurements in their processes.(Traceability)
National Measurement Institute
Most of the industrialized countries throughout the world maintain their own NMIs and similar to NIST, they also provide a high level of metrology standards or measurement services for their respective countries. NIST works collaboratively with these other NMIs to assure measurements made in one country do not differ from those made in another. This is accomplished through Mutual Recognition Arrangements (MRAs) and by performing interlaboratory comparisons between the NMIs. One thing to note is that the capabilities of these NMIs will vary from country to country and not all types of measurements are compared on a regular basis, so differences can exist. This is why it is important to understand to whom measurements are traceable and how traceable they are.
Traceability
Traceability is an important concept in the trade of goods and services. Measurements that are traceable to the same or similar standards will agree more closely than those that are not traceable. This helps reduce the need for re-test, rejection of good product, and acceptance of bad product. Traceability is defined by the ISO International Vocabulary of Basic and General Terms in Metrology (VIM) as: “The property of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties.”
The traceability of a measurement will typically be established through a chain of comparisons back to the NMI. However, in many instances in industry, the traceability of a measurement may be linked back to an agreed upon reference value or “consensus standard” between a customer and a supplier. The traceability linkage of these consensus standards to the NMI may not always be clearly understood, so ultimately it is critical that the measurements are traceable to the extent that satisfies customer needs. With the advancement in measurement technologies and the usage of state-of the art measurement systems in industry, the definition as to where and how a measurement is traceable is an ever-evolving concept.
NMIs work closely with various national labs, gage suppliers, state-of-the-art manufacturing companies, etc. to assure that their reference standards are properly calibrated and directly traceable to the standards maintained by the NMI. These government and private industry organizations will then use their standards to provide calibration and measurement services to their customers’ metrology or gage laboratories, calibrating working or other primary standards. This linkage or chain of events ultimately finds its way onto the factory floor and then provides the basis for measurement traceability. Measurements that can be connected back to NIST through this unbroken chain of measurements are said to be traceable to NIST. Not all organizations have metrology or gage laboratories within their facilities therefore depend on outside commercial/independent laboratories to provide traceability calibration and measurement services. This is an acceptable and appropriate means of attaining traceability to NIST, provided that the capability of the commercial/independent laboratory can be assured through processes such as laboratory accreditation.
source of Traceability: Analysis of measurement systems