Site Loader

An ideal measurement system would produce only “correct” measurements each time it is used. Each measurement would always agree with a standard.
A measurement system that could produce measurements like that would be said to have the statistical properties of zero variance, zero bias, and zero probability of misclassifying any product it measured. Unfortunately, measurement systems with such desirable statistical properties seldom exist, and so process managers are typically forced to use measurement systems that have less desirable statistical properties. The quality of a measurement system is usually determined solely by the statistical properties of the data it produces over time. Other properties, such as cost, ease of use, etc., are also important in that they contribute to the overall desirability of a measurement system. But it is the statistical properties of the data produced that determine the quality of the measurement system.

Statistical properties that are most important for one use are not necessarily the most important properties for another use. For instance, for some uses of a coordinate measuring machine (CMM), the most important statistical properties are “small” bias and variance. A CMM with those properties will generate measurements that are “close” to the certified values of standards that are traceable. Data obtained from such a machine can be very useful for analyzing a manufacturing process. But, no matter how “small” the bias and variance of the CMM may be, the measurement system which uses the CMM may be unable to do an acceptable job of discriminating between good and bad product because of the additional sources of variation introduced by the other elements of the measurement system.

Management has the responsibility for identifying the statistical properties that are the most important for the ultimate use of the data. Management is also responsible for ensuring that those properties are used as the basis for selecting a measurement system. To accomplish this, operational definitions of the statistical properties, as well as acceptable methods of measuring them, are required. Although each measurement system may be required to have different statistical properties, there are certain fundamental properties that define a “good” measurement system. These include:

1) Adequate discrimination and sensitivity. The increments of measure should be small relative to the process variation or specification limits for the purpose of measurement. The commonly known Rule of Tens, or 10-to-1 Rule, states that instrument discrimination should divide the tolerance (or process variation) into ten parts or more. This rule of thumb was intended as a practical minimum starting point for gage selection.
2) The measurement system ought to be in statistical control.FP6PF This means that under repeatable conditions, the variation in the measurement system is due to common causes only and not due to special causes. This can be referred to as statistical stability and is best evaluated by graphical methods.
3) For product control, variability of the measurement system must be small compared to the specification limits. Assess the measurement system to the feature tolerance.
4) For process control, the variability of the measurement system ought to demonstrate effective resolution and be small compared to manufacturing process variation. Assess the measurement system to the 6-sigma process variation and/or Total Variation from the MSA study.

source : Analysis of measurement systems

Post Author: ghaemi mohammad

This site has been established to provide updated and specialized information in the field of quality management systems and to share my experiences in the field of conformity assessment and promotion and promotion of this science.

Leave a Reply

Your email address will not be published. Required fields are marked *